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A New Method for Jitter Decomposition
Through Distribution Tail Fitting

Technical Bulletin 9

In this paper, WAVECREST Corporation presents a new time-domain jitter
separation method that automatically searches and fits the tail parts of the
jitter histogram with nonlinear jitter models and also estimates deterministic
and random jitter components. Bit error rate (BER) calculation, based on the
deterministic and random jitter components, is discussed and demonstrated.

This method/algorithm is used to decompose a total jitter histogram into DJ
and RJ components through tail fitting. Also discussed is total jitter histogram
theory and its relationship with DJ and RJ processes. Also described is an
algorithm that automatically identifies the tail parts of the distribution and fits
them with the Gaussian distributions for estimating the DJ and RJ components.
WAVECREST’s Monte Carlo simulation results that verify the validity of our
algorithm will be presented. Practical application examples are given using
WAVECREST’s jitter analysis software which incorporates the algorithm and
verifies the correlation as well as demonstrates the advantage of having DJ and
RJ components.

Note: Theoretical analysis and computer simulations have been performed. The
tail search and fitting algorithms have been implemented in our current
jitter analysis software product, Virtual Instruments Signal Integrity™
(VISI). A patent application has been filed with the U. S. Patent Office.

Introduction

In high-speed signal generation, transmission and reception, jitter is generally
defined as any timing displacement (or error) referenced to the timing of an
ideal signal. There are many ways to classify various jitters with many
components making up each classification. The most commonly used are
statistical-based or signal property-based (e.g., pattern dependent). In the
statistical-based classification, jitters are split into two categories:
deterministic jitter (DJ) and random jitter (RJ). Based on their definitions, DJ
is bounded while RJ is unbounded. In the signal property-based classification,
jitters are split into noise jitter (random motion of electrons) (NJ) and pattern
dependent jitter (PDJ). These classification schemes are broad and are the first
step in identifying jitter. For a general review of jitter and related issues,
please see references [1][2][3] in the References section. A hybrid approach to
jitter classification will be used which covers most jitter sources.

As previously mentioned, jitter can be classified within each broad category.
Deterministic jitter can be further separated into duty cycle distortion (DCD),
inter-symbol interference (ISI), periodic (PJ) and bounded uncorrelated (BU)
components. Jitter can be a single Gaussian (SG) or multiple Gaussian (MG)
within the random jitter. Each jitter component has specific corresponding
root causes and characteristics. General jitter sources for DJ are: lossy media,



reflections, cross talk, electromagnetic interference (EMI), systematical
modulations and pattern dependency. General jitter sources for RJ are:
thermal noise, shot noise, flick noise, random modulation and non-stationary
interference. In real world applications, generally speaking, what is measured
is the total jitter; both DJ and RJ mixed together. To understand root causes of
jitter, separating and identifying each jitter component is essential. As the
speed for microprocessor, memory, data bus and transmission media steadily
increases, failures caused by jitter will become more and more severe while
modeling, simulating, measuring and characterizing high-speed signal jitter
will become even more important and challenging.

WAVECREST Corporation has developed a method for DJ and RJ separation
based on the Blackman-Tukey algorithm [4]. With this method, the DCD+ISI is
obtained by calculating the mean of the time error (measured edges versus that
expected from a pattern). PJ and RJ are calculated through Fast Fourier
Transform (FFT) spectrum estimations of the variance using the auto-correlation
function of the time jitter. Since spectrum estimation is required in this method,
a time series record of jitter measurements is needed. In the case when a jitter
time record (i.e., jitter is measured as a function of time) is unavailable, this
method may not apply.

For time domain measurements, jitter can be measured for a specific edge
transition or over a time span of many edge transitions. In each case, many
jitter samples are collected for each edge transition so that statistical
information can be gathered and analyzed. A typical example in real world
practice is the jitter histogram measured for a specific edge transition or jitter
histograms measured over a time span of many edge transitions. Such a jitter
histogram reflects the mixture of DJ and RJ processes associated with the
edge transitions. For many years, this information has been available, but no
theory or method had been was established to decompose the total jitter
histogram into DJ and RJ components. What has been used to quantify jitter is
the statistical peak-to-peak value and 1σ standard deviation based on the
entire histogram distribution that has both DJ and RJ components. The
correct way to quantify jitter is to use the peak-to-peak value for DJ, since it is
bounded, and to use 1σ standard deviation for RJ, since it is unbounded and
random. It can be seen that the use of the peak-to-peak value and 1σ standard
deviation based on a total histogram that has both DJ and RJ components is
not only misleading but statistically wrong.

Jitter Histogram Distribution and the Relationship with DJ and RJ

Physically, random jitter is due to the random motion of particles within a
device or transmission media. Theoretically, the tail part of the histogram
distribution reflects the random jitter process. A Gaussian distribution best
describes the random velocity of these particles in an equilibrium state.
Therefore, random jitter is naturally modeled by a Gaussian function. Since
multi-temperature particle distribution is possible, a multi-Gaussian
distribution function is needed to model certain random jitter processes.



A single Gaussian jitter histogram distribution is defined as
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where Nmax is maximum event count, t is the jitter, µ and σ are the Gaussian
mean and standard deviation respectively.

The measured, total jitter histogram represents the scaled-up, total jitter
probability distribution function (PDF) and, if RJ and DJ processes are
independent, the convolution of RJ PDF with DJ PDF gives the total PDF. In
most cases, such an assumption is valid, therefore, the tail part of the
distribution should be mainly determined by the random jitter, which, in
general, has a Gaussian-type distribution. The random noise can be quantified
by the 1σ standard deviation of Gaussian distribution while the DJ can be
quantified by the peak-to-peak value. Depending on the error probability level,
the total RJ can be a multiple of the σ, deduced from the Gaussian distribution.

In the absence of DJ, the histogram of jitter should be, roughly, a Gaussian
distribution. Under this condition, there is only one peak in the distribution
which corresponds to zero DJ. The rms RJ is the σ value. When DJ and RJ
both come into play, the measured jitter distribution will be broadened and no
longer Gaussian as a whole. On the other hand, both ends of the distribution
should still retain Gaussian-type tails since DJ PDF is bounded. These tail-part
distributions can be used to deduce the RJ number. Because of the DJ, the
mean of each tail changes and multi-peaks can be present in the histogram. The
jitter difference between the far left peak value and far right peak value is the
DJ. Figure 1 is a drawing of such a broadened total histogram in the presence
of both DJ and RJ.

Figure 1 - Drawing of total jitter histogram
in the presence of DJ and RJ.
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If there is no bias and statistical sampling noise in the measurement, the two
tails, which represent the random process, should be symmetrical. Since it is
not possible to completely randomize measurements and reduce the sampling
noise to zero, the σ values for the far left and far right Gaussian tails may not
be the same. The total RJ value should be the average of these two tails while
DJ is the distance between the two peaks of the far left and far right Gaussian
tails, namely,

and

Tail Search and Fitting

Requirements and Specifications

Identifying the tail parts of the histogram distribution and then to fit them with
the Gaussian function are the key to DJ and RJ separation of a given total
jitter histogram. It is not possible to tell where the tail part of the histogram
will be without studying each individual datum and its relationship with the
neighboring data. The easiest way to identify a tail part is through the
graphical display of the histogram and visually identifying the tail part. The
disadvantage of such an approach is that it lacks repeatability and cannot be
adopted for production test. Therefore, the requirements for a search algorithm
should be: i.) Capable of finding the true tail part quickly, accurately and
repeatedly, ii.) Automatic (i.e., no user intervention or visual inspection are
required).

The fitting procedure should be able to deal with statistical fluctuations while
factoring this into the fitting routines. The tail part has the lowest event counts
and statistical uncertainty can be high. Simple, straight forward, least-square
fit algorithms will not work since the statistical error will propagate into the
fitting parameters. This in turn gives rise large to errors in DJ and RJ
estimation. A more advanced non-linear fitting algorithm is needed to meet
these requirements.

Algorithm for Tail Identification

One of the key characteristics of Gaussian tail-fit is its monotonicity. That
means: for the left side of the tail, it monotonically increases; for the right part
of the tail, it monotonically decreases. However, due to the presence of DJ,
monotonicity will break down producing local maximums near the left and
right part of tails. Without DJ, there is only one maximum that corresponds to
the mean of the distribution.

One challenge that a tail search algorithm faces is statistical fluctuations. In
the presence of statistical fluctuations, the monotonicity of a real Gaussian
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distribution is no longer true. Using the raw fluctuating data to find the local
maximum points for both left and right tails is extremely difficult, if not
impossible. The solution is to first filter out the noise and then use the
smoothed histogram to locate the maximum points. In general, there are two
ways to achieve this. One is through direct time domain averaging. Another is
through FFT to get the spectrum, apply a low-pass filter and then apply the
IFFT. In time domain averaging, deciding how many data points to use is
important since this will determine the smooth level of the curve. Also, in the
FFT/IFFT approach, the bandwidth of the filter has to be determined. The
number of averaging points and filter bandwidth may need to be adjusted,
depending on the fluctuation noise frequency and amplitude. In other words,
a rule-based, artificial intelligent algorithm must be used to enable the
smoothing algorithm to accommodate a wide range of fluctuation amplitudes
and frequencies. This is an important requirement to guarantee that smoothing
only washes away the unwanted fluctuation noise and not the true feature of
the jitter histogram.

Once the smoothed histogram hs(t) is obtained, either through the time
domain averaging or time-frequency domain FFT-filtering-IFFT, the
maximum locations can be found by calculating the first and second order
derivatives of the jitter histogram. The only maximum points of interest are
the first maximum from the far left and the first maximum from the far right.

Algorithm for the Tail Fitting

A fitting algorithm should be used which weights the data record based on the
quality of each data. The larger the error, the smaller role it should play in
minimizing the difference between the expected model value and the
measured value. Thus, we need to use χ2 as a gauge to determine how good
the fit is. The fitting function is Gaussian and the fitting algorithm is nonlinear
thereby handling both linear and non-linear fitting functions. Please see
reference [5] for details of χ2 theory.

In the case of linear least-squared fitting, in contrast to linear equation solving,
χ2 fitting is an iterating process. The final answer is obtained when the
iteration converges. For this reason, initial values of the fitting parameters are
needed. A primitive way to do this is to input different initial values and to see
whether they converge to the same final values. If the initial guessed values
are far from the final actual values, it may either take a longer time to
converge or get stuck at a local χ2 minimum and never converge to the final
global χ2 minimum point. Calculations should be carried out to estimate the
initial fitting parameters using the tail parts of histogram so that the initial
fitting parameters are close to the final converging values. This will also cause
the iteration to converge rapidly and to avoid stuck-in local minimum (pivot).



MONTO CARLO SIMULATIONS

Histogram with Statistical Noise

Simulations, using a known bimodal histogram represented by two added
Gaussian distributions superimposed with random noise, are needed to test how
well the search and fitting algorithms worked. This causes the overall histogram
to be close to that of actual measurements. The overall histogram is represented
by the following equation:

where N1, Nr are the peak values, µl, µr are means, and σ l, σr are standard
deviations for two Gaussian distributions. ran(t) is a random number-generating
function based on Monte Carlo methodology with a mean of zero and a standard
deviation of unity. Nn is the amplitude for the random number envelopes. For
Monte Carlo-based random number generation method, please see reference [6].

A good search and fitting algorithm should return the fitted parameters that
are consistent with those pre-defined in the simulation. A critical test is
whether an accurate fitting parameter can be obtained in the presence of
significant statistical fluctuations, i.e., Nn is a significant portion of N1 or Nr.
Otherwise, no accurate parameters can be obtained since all the real world
measurements are subject to statistical fluctuation.

Fitting Results

There are two Gaussian distribution scenarios that need to be addressed. The
first is when two Gaussian distributions are well separated, i.e., when µr - µl >
σ l + σr. Under this condition, the two distributions are not well mixed and the
tail parts, up to the point of the first maximum, are essentially uncontaminated.
Therefore, both left and right tail data from the lower value to the first
maximums can be used. This will enhance the tail data usage and the Gaussian
model will be better constrained. This can correspond to the case when DJ > 2
RJ in the jitter analysis applications. Such a histogram is very common in
spread-spectrum clock devices.
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Figure 2.1 - Nn = 0, no statistical fluctuation.

The second scenario is when two Gaussian distributions are not well
separated, namely  µr - µl < σ l + σr. Under this condition, the contamination
of two distributions could extend to the tail parts. As a result, using only the
lower parts of the tails for the fitting will minimize contamination. A
conservative way is to use the tail part from the lowest event count to half of
the Nl or Nr. This can correspond to the case when DJ < 2 RJ in the jitter
analysis applications.

Figures 2.1-2.2 show the results corresponding to two well-separated Gaussian
histograms (i.e., µr - µl > σ l + σr). Figures 3.1-3.2 show the results
corresponding to two mixed Gaussian histograms (i.e., µr - µl < σ l + σr). In each
case, non-fluctuated (Nn = 0) and fluctuated (Nn ≠ 0) scenarios are considered. In
both cases, the fitted parameters are consistent with the simulated parameters to
within 4%, even when the statistical fluctuation reaches 15% of the total
histogram peak.



Figure 2.2 - Nn = 30, with significant statistical fluctuation

Figure 3.1 - Nn = 0, no statistical fluctuation.



Figure 3.2 - Nn = 30, with significant statistical fluctuation.

A Practical Case Study

The search and fitting algorithms previously discussed have been
implemented in WAVECREST’s Virtual Instrument Signal Integrity™ (VISI)
software. Using the WAVECREST DTS-2075™ system and a clock input to
the instrument, the jitter histogram was measured and VISI was used to
decompose DJ and RJ. Figure 4 shows an example of clock jitter histogram
and DJ and RJ values deduced from the tail-fitting algorithm. In this case, the
histogram shows twin-peak DJ process caused by a periodic modulation: A
100MHz clock signal with a 5MHz periodic modulation. Thick lines indicate
the Gaussian model fitted to the tail part of the distribution and overlaying the
measured histogram (thin lines). The DJpk-pk value represents the
modulation jitter amplitude.

Figure 4 - Histogram tail search and fitting algorithm application for clock
jitter, using Wavecrest’s DTS system as the measurement instrument.



Using the DJ and RJ values, clock performance can be predicted with the bit
error rate error (BER) curve that is calculated through the measured total
histogram and RJ number. Please see reference [3] for details on the how to
calculate the BER curve. Figure 5 shows the BER curve (also called bathtub
curve). Thick lines indicate the actual measured BER and thin lines indicate
the extrapolated BER based on a RJ Gaussian PDF. BER curve is an
important overall performance indicator for time critical ICs and systems. In
serial data communication, total jitter is normally specified at an error
probability level of 10-12. In Figure 5, the operational margin is 9873.4ps, and
the total jitter is 126.6ps at 10-12 probability level.

Figure 5 - BER curves for the same clock signal.

A correlation study has been carried out comparing the RJ and DJ values with
those obtained by using the Blackman-Tukey method. In most cases, the
difference was less than 5%. However, tail fitting methodology does not
require the time span of the jitter record. Consequently, tail-fitting algorithms
have a wide application in the field of jitter analysis.

Summary and Conclusions

WAVECREST Corporation has developed a general-purpose, automated
search and nonlinear fitting algorithm with special emphasis on deterministic
jitter and random jitter separation. Under significant statistical fluctuation, this
algorithm separates DJ and RJ accurately and repeatedly. This algorithm does
not require any user intervention and applies in both laboratory and
production applications. This algorithm can apply to either a single histogram,
or a series jitter histogram (for deterministic and random jitter spectrum
analysis).

These algorithms can also be useful in other general-purpose signal analysis
applications, too. For example, this method can be used to analyze phase noise
spectrum and determine what kind of noise processes are involved in a
specific device such as clock PLL or clock recovery PLL. Other examples
include: DJ and RJ separation for eye-histogram and bounded uncorrelated
jitter (BUJ) separation that can be caused by cross talk.



WAVECREST Corporation has also simulated the effect of sampling statistics
error using the Monte Carlo method, for a single Gaussian distribution. This is
a very important issue since the sampling statistics used to represent the
underlining population statistics can only be measured. Regardless of what
kind of analysis tool one is used, if the sampling statistics are far from the
population statistics, the true value for the population statistics will be
inaccurate. This is true for any kind of measurement. The goodness of the
sampling statistics is proportional to the total number of measurements used to
compose the histogram. As the total number of measurements increases, the
better the sampling statistics. If the histogram measurement and the DJ and RJ
value deduction process, for a given total number of measurement per
histogram, is repeated for a given number of times, the DJ and RJ parameters
deduced will compose distributions that are very close to Gaussian. The
standard deviation for the DJ and RJ distributions obtained in this manner is
inversely proportional to the total number of measurements in each histogram
composition. WAVECREST’s simulation has shown a 1σ error of 4.5% for DJ
and 17.2% error for RJ, given 10,000 measurements per histogram and
repeating the simulation 100 times. Of course, for different histograms or for
different measurement totals, these numbers can change. The point is,
sampling statistics are very important for guaranteeing the accuracy of DJ and
RJ values. A minimum number of measurements are needed for quality
sampling statistics. However, that minimum number can vary with different
applications and accuracy specifications.
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